
Energy and Performance Improvements in Microprocessor Design using a

Loop Cache

Nikolaos Bellas�, Ibrahim Hajj, Constantine Polychronopoulos, and George Stamoulisy

Department of Electrical & Computer Engineering

and the Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

1308 West Main Street, Urbana, IL 61801

Abstract

Energy dissipated in on-chip caches represents a substantial portion
in the energy budget of today's processors. Extrapolating current
trends, this portion is likely to increase in the near future, since
the devices devoted to the caches occupy an increasingly larger
percentage of the total area of the chip.

In this paper we extend the work proposed in [1], in which an
extra, small cache (called �lter cache) is inserted between the CPU
data path and the L1 cache and serves to �lter most of the ref-
erences initiated from the CPU. In our scheme, the compiler is
used to generate code that exploits the new memory hierarchy and
reduces the possibility of a miss in the extra cache. Experimen-
tal results across a wide range of SPEC95 benchmarks show that
this cache, which we call L-Cache from now on, has a small per-
formance overhead with respect to the scheme without any extra
caches, and provides substantial energy savings. The L-Cache is
placed between the CPU and the I-Cache. The D-Cache subsys-
tem is not modi�ed. Since the L-Cache is much smaller, and, thus,
has a smaller access time than the I-Cache, this scheme can also
be used for performance improvements provided that the hit rate
in the L-Cache is very high. In our experimental results, we show
that the L-Cache does indeed improve performance in some cases.

1 Introduction

There has been a growing interest in reducing the power con-
sumption of a processor in the past few years. The increasing
prevalence of portable computing has promoted energy e�-
ciency from concern primarily of circuit designers to an issue
of general interest to the computer architecture community.
Some architectural techniques can improve performance

and reduce energy dissipation at the same time. For exam-
ple, any data or instruction locality enhancement technique
decreases the miss rates in the L1 caches and, as a side e�ect,
reduces the energy since the CPU does not access larger and
more \expensive" caches.
On the other hand, most of the aggressive compiler trans-

formations for speculative processors increase the power dis-
sipated since they force the machine to execute speculatively
a lot of redundant instructions from paths that may actu-
ally never be taken. The extra computation, which can be a
substantial portion of the dynamic instructions, entails power
waste although it greatly improves performance. This specu-
lation overhead will probably increase in future processors as
speculation techniques become more aggressive [2]

�DigitalDNA Systems Architecture Labs., Motorola Corp.,
Schaumburg, IL

yIntel Corporation, Santa Clara, CA

The paper by Kin [1] tries to improve the Energy�Delay
product in the embedded processor families by introducing
the �lter cache: a small, extra cache with size less than 1KB.
Provided that the locality of instructions, and the data reuse
are large, the �lter cache can satisfy most of the references by
the CPU. The �lter cache is smaller and more power-e�cient
than the L1 Caches, thereby reducing the average energy dis-
sipated by a memory reference. The price to be paid, however,
is larger miss rates and execution time. The authors report a
decrease of 58% in the energy dissipated in the cache subsys-
tems (both I-Cache and D-Cache), but an increase of 21% in
the execution time for a set of multimedia benchmarks [3].
Our approach alleviates the negative e�ects on performance

by having the compiler generate code that exploits the new
memory hierarchy, and selecting statically which instructions
are to be placed in the L-Cache. The CPU will then access
the extra cache (L-Cache) only when one of these instructions
are to be fetched, and it will bypass it otherwise. Since most
of the programs tend to execute frequently only a small subset
of their instructions, the L-Cache can be used to capture these
instructions and provide them to the CPU. The compiler will
restructure the code so that it is easy for the hardware to
�gure out whether it executes a \selected" or a \non-selected"
instruction, and accordingly access either the L-Cache or the
I-Cache.
The remainder of the paper is organized as follows: Sec-

tion 2 details the compiler transformations necessary for our
scheme, while section 3 describes the hardware support, and
the energy estimation method we used for the caches. Sec-
tion 4 presents simulation results for both energy and per-
formance on a subset of SPEC95 benchmarks, and section 5
discusses an extension of the method for the integer bench-
marks. The conclusion is given in section 6.

2 Compiler Enhancements

In our approach, the compiler is given the duty to select the
appropriate part of the code to be placed in the L-Cache, as
well as to restructure the code so that the con
icts between
placed instructions are minimized. We use pro�le data from
previous runs of the program to select the best instructions
to be cached. The selection is done on a per basic block basis.
After selection, the compiler lays out the program so that the
selected basic blocks that need to be placed at the same time
in the L-Cache do not map to the same L-Cache location. To
achieve this, the compiler performs two stages:

� function inlining, in which the compiler tries to expose as
many basic blocks as possible in frequently executed rou-
tines. This step should be done judiciously since function

inlining can also create locality problems in the I-Cache.
In our experiments, we only perform function inlining
for the integer benchmarks.

� block placement, the main stage of our method, in which
the compiler selects, and then places the selected basic
blocks so that the number of blocks that are placed at
the same time in the L-Cache is maximized.

The block placement technique is explained in detail in the
next section.

2.1 Block Placement

Conceptually, the block placement stage consists of three
steps.
In the �rst step, the compiler selects the basic blocks which

will be placed in the L-Cache using the pro�le information
from a previous run. These block are the most frequently
executed blocks in the program that are nested within loops.
A basic block is placed in the L-Cache if it is expected to stay
there for a long period of time without getting replaced. This,
in e�ect, decouples the communication between the I-Cache
and the L-Cache, and reduces the tra�c between them.
Our algorithm selects basic blocks of the program using the

Control Flow Graph (CFG) and the pro�le data. A block is
selected by the compiler unless at least one of the following
criteria is met:

� The algorithm �nds that the basic block was too large
to �t in the L-Cache. This can be either because the size
of the block is larger than the cache size, or because it
cannot �t at the same time with other, more important,
basic blocks.

� Its execution frequency is smaller than a threshold, and
is thus deemed unimportant. The execution frequency of
a basic block is the percentage of the execution time of
the program which is due to the execution of this basic
block.

� It is not nested in a loop. There is no point in placing
such a basic block in the L-Cache since it will be executed
only once for each invocation of the function in which the
basic block belongs.

� Even if its execution frequency is large, its execution den-
sity might be small. For example, a basic block that is
located in a function which is invoked a lot of times might
have a large execution frequency, but it might only be
executed few times for every function invocation. We
de�ne the execution density of a basic block as the ratio
of the number of times it is executed to the number of
times that the function in which it belongs, is invoked.

� Finally, a very small basic block is not placed in the L-
Cache even if it passes all the other requirements. The
extra unconditional branch instructions that might be
needed to link it to its successor basic blocks will be an
important overhead in this case.

In the second stage, the compiler seperates the selected ba-
sic blocks from the non-selected ones, and places all of them in
the global address space. For example, consider the following
code :

do 100 i=1, n

B1; # basic block

if (error) then

error handling;

B2; # basic block

100 continue

B4

B5

B3

B1

CFG of a program

B2

B3

B5

Layout at the end of stage 2.

B4

B1B2

Figure 1: The CFG of a code, and the layout after the

second stage

If the if-statement in the loop is placed between basic blocks
B1 and B2 in the �nal layout of the code, it may create a
con
ict in the L-Cache. This will happen if the size of the
L-Cache is smaller than the the sum of the sizes of the basic
blocks B1, B2 and the if-statement, but larger than the sum
of the sizes of the basic blocks B1, and B2 alone. If we move
the if-statement at the end, and place B1 and B2 one after the
other, we e�ectively reduce the possibility of an overlap. We
identify such cases and move the infrequently executed code
away so that the normal
ow of control is in a straight-line
sequence. This entails the insertion of extra jump instructions
to retain the original semantics of the code.

The net e�ect of the second stage of the algorithm is that
the selected basic blocks will be placed before the non-selected
ones in the memory address space. Fig. 1 shows an example
of the CFG of a portion of the code and the layout of the basic
blocks after the second stage. Only basic blocks B1, B4, and
B5 have been selected in the �rst stage of the algorithm.

The structure of the program (as this is described by the
CFG) is also important in minimizing the miss rate in the L-
Cache. In the third stage, the compiler considers the nesting
of the selected basic blocks and places them in the memory
address space so that blocks that are in the same nesting do
not map to the same L-Cache location. For example, B6 in
Fig. 2 should not map to the same L-Cache location as B4

or B5, since, in that case, the L-Cache would miss in every
iteration of loop L5 when it accesses B6. The same goes for
B4 and B5. On the other hand, B1 and B2 can overlap since
B2 is only executed when B1 �nishes.

The compiler uses the nesting information of the selected
basic block, and tries to place them in such a position so that
mapping con
icts in the L-Cache are minimized. Since the L-
Cache is usually small, the reduction of mapping con
icts is a
crucial step for the minimization of the misses in the L-Cache.
The complete algorithm for the mapping of basic blocks in the
L-Cache space area is given in [4]. The basic idea is that basic
blocks that belong to di�erent nesting levels should not map
to the same position in the L-Cache. For example, B4 and
B5 should not overlap in the L-Cache, as we explained in the
previous paragraph.

The user has the ability to adjust the thresholds in the

B1

B2

B7

B4

B6

L1
L2

L5
L6

L3

L4

L7

B5

L8

B8

B3

Figure 2: Nesting example

selection of the basic blocks in the �rst stage, and trade o�
performance degradation with power savings. For example, a
smaller basic block frequency threshold will select more basic
blocks for placement, leading to larger energy savings, and,
possibly, to a larger delay, since these basic blocks will need
extra jump instructions to retain the semantics of the code. In
the extreme case, the user can either select every basic block
to be placed in the extra cache, or can disable the L-Cache al-
together. Therefore, individual applications can choose from
a range of caching policies.

3 Hardware Enhancements and

Energy Estimation

The extra hardware needed to implement our scheme should
allow the L-Cache to be bypassed when it executes basic
blocks that are not selected by the compiler. The organi-
zation of the extra hardware is shown in Fig. 3. The L-Cache
is �lled with instructions from the higher levels of the mem-
ory hierarchy when it misses. It is assumed to be empty at
the beginning of program execution.

The PC is presented to the L-Cache tag at the beginning
of the clock cycle. The L-Cache tag will only output its tag
if the \blocked part" signal is on. This signal is generated by
the Instruction Fetch Unit (IFU), and its meaning is explained
later. In that case, the comparator checks for a match, and if
it �nds one, it instructs the multiplexer to drive the contents
of the L-Cache in the data path. At the same time, the data
portion of the L-Cache asserts its output and sends the new
instruction to the data path. The I-Cache is disabled for this
clock cycle, since the signal \blocked part" is on.

In case of a L-Cache miss (\LCache Hit" is o�), the I-Cache
controller activates the I-Cache in the next clock cycle, and
gets the referenced instruction from there. At the same time,
this instruction is transfered to the L-Cache. Note that the L-
Cache and I-Cache are only accessed sequentially and never
in parallel. If \blocked part" = o�, the I-Cache controller
activates the I-Cache without waiting for the \LCache Hit"

signal. In this way, the L-Cache can be bypassed without a
delay penalty.

Recall that the compiler has already laid out the code so

 I - Cache

PC(31:0)

 Data Path

LCache_Hit

blocked_part

32 - bit
 MUX

L-CacheL-Cache

DataTag

32 - bit
Logic Comp.

P
C

(8
:2

)

P
C

(3
1:

9)

P
C

(8
:2

)

D
Bu

s(
31

:0
)

ICache_Bus(31:0)

LC
a

c
h

e
_B

u
s(

31
:0

)

Figure 3: LCache organization

that the basic blocks that are destined for the L-Cache are
placed before the others. A 32-bit register is used to hold
the address of the �rst non-placed block in the main memory
layout. If the PC has a value less than that address, the 32-
bit comparator will set \blocked part" = on, else this signal
will be set to o�. This way, the machine can �gure out with
only an extra comparison which portion of the code executes.
To imlement this, we add a new instruction to the instruc-

tion set architecture, called \alloc", which marks the bound-
ary between the placed and the non-placed code. This in-
struction is executed upon entry to a function, and is used to
store this boundary address to the 32-bit register.
For the energy estimation in the I-Cache subsystem, we

used an in-house cache energy model based on [5]. It is a de-
tailed transistor-level model which uses run-time information
for the caches (number of accesses, number of hits, misses, in-
put signal statistics), and the complexity and internal cache
organization (cache size, block size, associativity, banking).
It is used for both the I-Cache and the L-Cache (or �lter
cache) [6].

4 Experimental Evaluation

In this section we describe the experimental results on energy
savings and e�ects on performance of applying the proposed
techniques to the SPEC95 benchmarks, and we compare our
method with the �lter cache method. We �rst outline the
experimental setup.

4.1 Simulator Environment

To gauge the e�ect of our L-Cache in the context of a realistic
processor operation, we simulated the MIPS2 ISA using the
MINT [7] and the SpeedShop [8] tool suites. MINT is a soft-
ware package for instrumenting and simulating binaries on a
MIPS machine. We built a MIPS2 simulator on top of MINT
which accurately re
ects the execution pro�le of the R-4400
processor. Table 1 describes the memory subsystem con�gu-
ration as (cache size / block size / associativity / cycle time
/ latency to L2 cache in clock cycles / transfer bandwidth in
bytes per clock cycles from the L2 Cache). Both I-Cache and
D-Cache are banked both rowwise and columnwise to reduce

the access time and the energy per access [5]. We use the
tool cacti, described in [5], to estimate the access time of the
on-chip caches, as well as the optimal banking that minimizes
the access time.

Parameter Con�guration
L1 I-Cache 32KB/32/1/1/4/8
L1 D-Cache 32KB/32/2/1/4/8

Table 1: Memory subsystem con�guration in the base

machine

We considered a �lter cache of 256 and 512 bytes, and block
size that varied between 8 and 32 bytes. The L-Cache was
also 256 and 512 bytes, and always had a block size of 4 bytes,
i.e. the size of a MIPS instruction. A larger block size does
not signi�cantly increase the hit rate of the L-Cache, whereas
it negatively a�ects the dissipated energy per access. The
L2 uni�ed cache is o�-chip and its energy dissipation is not
modeled.

We also experimented with di�erent scenaria for the user
given thresholds that guide the basic block selection and
placement in the L-Cache (Table 2). A more aggressive sce-
nario results in larger energy gains at the expense of larger
performance degradation. A frequency threshold of 0.01%,
for example, will force the tool to mark for placement only
basic blocks that have an execution time of at least 0.01% of
the total execution time of the program. A size threshold of
10 will force the tool to mark only the basic blocks that have
at least 10 instructions, and so on.

First, we ran the benchmarks to collect the pro�le data.
The data were used to drive the inline and the block place-
ment heuristics. The tool, along with the restructuring of
the body of the program, selected various statistics regarding
the quality of the generated code. SpeedShop was used for
pro�ling and the MIPSpro compiler was used for compilation
and code optimization. The actual simulation was done using
MINT.

The next section delineates the energy and delay results
for the �lter and the L-Cache under the di�erent scenaria
described earlier. It also looks into potential performance
gains using a faster clock, equal to the access time of a smaller
I-Cache. We show that using our method, energy as well
as delay can be simultaneously reduced, when the compiler
assumes the role of statically allocating instructions to the
L-Cache. For brevity, we only present the results for an extra
cache of size 0.5KB.

4.2 Results

Using the con�guration of Table 1, we performed an analy-
sis across di�erent organizations of the �lter cache and the
L-Cache. Table 3 shows the energy gains in the I-Cache sub-
system for the three di�erent L-Cache and �lter cache con-
�gurations. The numbers are normalized with respect to the
energy dissipation of the original scheme. The energy in the
modi�ed con�gurations is due to both the I-Cache and L-
Cache (or �lter cache for the three last columns). A result

Experiments Frequency Thres. Size Thres. Exec. Density Thres.

FP INT FP INT FP INT

Aggressive (a) 0.01% 0.01% 5 5 5 5
Less Aggressive (b) 0.5% 0.5% 10 5 10 5
Moderate (c) 1% 1% 20 5 20 5

Table 2: User given thresholds in the L-Cache experi-

ments

less than one is good since it denotes an improvement in en-
ergy or delay with respect to the original scheme. Even a
small delay penalty can be acceptable as long as the energy
reduction is substantial.

The clock period was set equal to the access time of the D-
Cache, which is the critical path in a lot of high performance
processors. A 32KB, 2-way set associative D-Cache, with a
32 bytes block size has an access time of 11.4ns using a 0.8um
feature size (as found using cacti).

512 bytes extra cache

Benchmark L-Cache Filter Cache
(a) (b) (c) 8B 16B 32B

tomcatv 0.141 0.198 0.198 0.084 0.104 0.156
swim 0.139 0.145 0.173 0.092 0.114 0.174
su2cor 0.373 0.389 0.389 0.110 0.124 0.173
hydro2d 0.260 0.261 0.261 0.088 0.112 0.172
compress95 0.873 0.875 0.875 0.310 0.248 0.271
li 1 1 1 0.359 0.377 0.280
perl 0.934 0.94 0.949 0.421 0.32 0.308

Table 3: Normalized energy relative to the base machine

for 512-byte extra cache

For the SPECfp95 benchmarks, a 0.5KB L-Cache is almost
as successful as the �lter cache in reducing the energy of the
I-Cache subsystem especially when an aggressive scenario is
followed. Filter caches with a 32 bytes clock size have large
energy consumption per memory access, and they need a 32
byte large bus to connect them with the I-Cache. The �l-
ter caches capture all the instructions, no matter what their
nesting is or how often they execute.

The performance overhead of these cache con�gurations
with respect to the original execution time is given in Table
4. This is a full chip simulation of R-4400 that takes into
consideration the latency in the memory hierarchy, the struc-
tural hazards in the FPU, and the data dependency hazards
both in the integer unit and the FPU.

512 bytes extra cache

Benchmark L-Cache Filter Cache
(a) (b) (c) 8B 16B 32B

tomcatv 1 1 1 1.011 1.006 1.04
swim 1 1 1 1.011 1.006 1.004
su2cor 1 1 1 1.141 1.133 1.128
hydro2d 1 1 1 1.007 1.004 1.002
compress95 0.979 0.979 0.979 1.126 1.063 1.035
li 1 1 1 1.175 1.103 1.068
perl 1 1 1 1.211 1.131 1.084

Table 4: Normalized delay relative to the base machine

for 512-byte extra cache

The most important advantage of the L-Cache with respect
to the �lter cache is the small performance overhead, which is
vital for high performance machines. The performance over-
head is due to the (small) miss rates in the L-Caches and the
extra jump instructions that are inserted by the compiler as
discussed previously. Filter cache con�gurations su�er from
a much larger miss rate.

The previous tables identify the opportunity for perfor-
mance gains if the designer exploits the smaller access time
of the extra caches. By reducing the clock period delay along
with energy can be simultaneously reduced. This concept is
particularly attractive for our compiler-driven scheme, since
it can bene�t from the very high hit rate in the L-Cache.

We present one such modi�cation. We set the clock period
equal to the access time of the I-Cache and we modify the
size of the I-Cache so that it becomes the critical path in the
CPU. We present results for a direct-mapped I-Cache of 8KB,
with a block size of 16 bytes. The new clock period is 7.91ns.
Notice that, in the this case, the access time for the D-Cache
becomes two clock cycles. If the L-Cache can satisfy most of
the requests from the pipeline, then the smaller I-Cache will
not severely a�ect the hit rate. In this experiment we make
the implicit assumption that the critical path can be reduced
to 7.91ns either by pipelining or because no other path in the
original implementation had a delay larger than 7.91ns.

Again, we denote the execution time of the original con-
�guration that uses no extra caches as unity, and normalize
everything else with respect to that. The extra cache size
varies again between 256 and 512 bytes. We should also note
that other such ideas can be readily applicable for enhancing
performance, by reducing the clock period. For example, the
D-Cache, as opposed to the I-Cache, can be made smaller.
Then, we need two clock cycles to access the larger I-Cache.
Due to lack of space, we only present results for the �rst mod-
i�cation.

512 bytes extra cache

Benchmark L-Cache Filter Cache
(a) (b) (c) 8B 16B 32B

tomcatv 0.818 0.812 0.812 0.820 0.816 0.810
swim 0.823 0.823 0.823 0.833 0.829 0.824
su2cor 0.784 0.784 0.784 0.799 0.794 0.789
hydro2d 0.785 0.784 0.784 0.789 0.787 0.783
compress95 0.860 0.860 0.860 0.961 0.917 0.898
li 0.907 0.907 0.907 1.039 0.990 0.955
perl 0.989 0.989 0.989 1.119 1.064 0.984

Table 5: Normalized delay relative to the base machine

for a 512-byte extra cache, and a direct-mapped, 8KB

I-Cache with block size of 16 bytes

By applying this framework to our simulator, we observed
that energy as well as delay can be reduced (Table 5). This is
especially true for the L-Cache, since the compiler can guide
the hardware to access either the L-Cache or the I-Cache, and
avoid the unacceptably high miss rates of the �lter cache for
some programs.

Integer benchmarks do not perform well under this selec-
tion algorithm. Most of the basic blocks in the SPECint95
benchmarks are not nested, and, hence, cannot be placed in

the L-Cache during execution. From a performance point of
view, however, the L-Cache is still preferable to a �lter cache
in a processor that runs integer code. In the next section, we
analyze an alternative approach for the selection and place-
ment of basic blocks in the L-Cache, that is better suited to
non-numeric code.

5 Modi�ed scheme for integer

benchmarks

The previous methodology was based on the detection of
nested basic blocks in loops that are executed a large number
of times. These basic blocks became candidates for compiler-
driven placement in the L-Cache. Figure 4 shows why the
algorithm fails for some integer benchmarks.
The �gure displays the classi�cation of the dynamic in-

structions for the most troublesome SPECint95 benchmarks
for a 0.5KB L-Cache. An instruction belongs to one of the
six following categories: \P" if it has been selected by the
algorithm to be positioned in the L-Cache, \U" if it is in a
basic block with a small execution frequency (unimportant),
\NN" if it is in a block with large execution frequency but
not nested in a loop, \SD" if it in a nested block with large
execution frequency but small execution density, \SS" if it
belongs to a nested block with large frequency and execution
density but small size, and \L" if it satis�es all the above cri-
teria but does not �t to the L-Cache. For this experiment, the
frequency threshold is chosen 0.01% of the execution time of
the program, the density threshold 5 executions per function
invocation, and the size threshold 5 instructions.

0

10

20

30

40

50

60

70

80

90

100

go li perl vortex average

P
U
NN
L
SD
SS

Figure 4: Instruction placement results for the

SPECint95 benchmarks with a 0.5KB L-Cache

The single most important reason that disquali�es the basic
blocks of the integer benchmarks from being cached is nesting.
Most of the basic blocks do not belong to a loop, or, they
belong to a loop that has a a function call (85% of them).
In more than 10% of the cases, the basic blocks have small
execution density.
The problem seems to be inherent to the structure of inte-

ger programs, especially when those are written in C/C++.
This programming methodology favors small sections of se-
quential code, procedural abstraction, and lack of very deeply

nested loops. The execution time is distributed among a
larger number of basic blocks, many of which do not execute
many times per function invocation. An alternative approach
for selection of blocks for the L-Cache is therefore more ap-
propriate for these programs.

The proposed solution selects a function and places its most
important basic blocks permanently in the L-Cache. In other
words, they are not replaced when the thread of control leaves
the function. Naturally, we select the function with the largest
contribution to the execution time as this has been designated
by the pro�le data. The method consists of two steps:

First, our method performs function inlining to maximize
the gains of this approach. For example, the function with
the largest execution time may contain function calls to other
functions. If these functions are inlined, the contribution of
the original function will increase and a larger number of basic
blocks will be exposed in that function.

After inlining, the heuristic selects the most frequently ex-
ecuted function. If all the important basic blocks of the func-
tion �t in the L-Cache, the block placement algorithm will
proceed to place them all. A heuristic is used in case the L-
Cache cannot accommodate all the important basic blocks at
the same time.

In that case, we apply a greedy approximation algorithm
which works as follows: we order the set U of basic blocks
by the \key": n(bb)

s(bb)
so that n(bb1)

s(bb1)
�

n(bb2)
s(bb2)

� � � � �
n(bbn)
s(bbn)

.

Starting with U 0 empty, we proceed sequentially through the
list, each time adding a basic block bb whenever the sum of
the sizes of the blocks already in U 0 and bb does not exceed
C.

In addition, we perform another greedy procedure in which
the list has been sorted using only the number of cycles n(bb)
of each basic block, so that n(bb1) � n(bb2) � � � � � n(bbn).
The best solution among the two is selected. A near optimal
solution is obtained using this approach in our experiment.

During execution, the L-Cache will be instructed to store
all the selected basic blocks when the thread of control passes
through them for the �rst time. These basic blocks will re-
main in the L-Cache thereafter. The hardware mechanism to
achieve this are identical to the loop-based algorithm.

5.1 Experimental Evaluation of the

Modi�ed Scheme

The energy gains of the L-Cache are given in Table 6. The
results are very encouraging for benchmarks that have poor
performance under the initial method. On average, the en-
ergy dissipated in the I-Cache/L-Cache subsystem is 84.5% of
the energy in the original I-Cache subsystem with almost no
performance overhead. Similar results are obtained for most
of the integer benchmarks that do not score well under the
old scheme (e.g. 130.li, 134.perl). In the new experiments we
did not set any size constraints for the selected basic blocks.

The execution time overhead is negligible in this scheme for
an L-Cache of 0.5KB. This is because the hit rate is almost
100% and the L-Cache is large enough to accommodate all
the important basic blocks of a function.

Benchmark Energy Delay

compress95 0.776 0.979
li 0.869 0.981
perl 0.823 1

Table 6: Normalized energy and delay relative to the base

machine for a 512-byte extra cache, using the modi�ed

scheme for integer benchmarks

6 Conclusions

This paper presented a paradigm for hardware/compiler co-
design that targets activity minimization in a processor.
These techniques are orthogonal to the standard circuit or
gate level techniques that are traditionally used by design-
ers to reduce power and can therefore be used to further
reduce power consumption without impairing performance.
This paradigm describes a more judicious use of the I-Cache
unit of a processor when the
ow of control is caught within
a loop. The compiler is given the responsibility to restructure
the code. The aim is to minimize the overlap between basic
blocks that are selected to be placed in an extra cache. This
cache can be used instead of the larger, more capacitive, and
more energy consuming I-Cache. The hardware mechanism
that supports the scheme was shown to be very simple.
Since performance is the most important metric in today's

high performance processors, no energy reduction technique
will be attractive unless it has only a marginal e�ect on
performance, or its overhead can be hidden by other com-
piler/architectural techniques. If this is the case, even a mod-
erate energy reduction will be welcome.

References
[1] J. Kin, M. Gupta, and W. Mangione-Smith, \The �lter cache: An

energy e�cient memory structure," in Proceedings of the Interna-
tional Symposium on Microarchitecture, pp. 184{193, Dec. 1997.

[2] M. Lipasti and J. P. Smith, \Superspeculative microarchitecture
for beyond ad 2000," IEEE Computer, vol. 30, pp. 59{66, Sept.
1997.

[3] C. Lee and M. Potkonjak and W.H. Mangione-Smith, \Mediabench:
A tool for evaluating multimedia and communication systems," in
Proceedings of the International Symposium on Microarchitec-
ture, Dec. 1997.

[4] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis, \Archi-
tectural and compiler support for energy reduction in the memory
hierarchy of high performance microprocessors," in Proceedings of
the International Symposium of Low Power Electronics and De-
sign, pp. 70{75, Aug. 1998.

[5] S. Wilson and N. Jouppi, \An enhanced access and cycle time model
for on-chip caches," tech. rep., DEC WRL 93/5, July 1994.

[6] N. Bellas, I. Hajj, and C. Polychropoulos, \A detailed, transistor-
level energy model for SRAM-based caches," in Proceedings of the
International Symposium on Circuits and Systems, 1999.

[7] J. E. Veenstra and R. J. Fowler, \MINT: A front end for e�cient
simulation of shared-memory multiprocessors," in Proceedings of
the Second International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MAS-
COTS), pp. 201{207, 1994.

[8] SpeedShop User's Guide. Silicon Graphics, Inc., 1996.

[9] G. Kane and J. Heinrich, MIPS RISC Architecture. Englewood-
Cli�s, NJ: Prentice Hall, 1992.

